TL4581 DUAL LOW-NOISE HIGH-DRIVE OPERATIONAL AMPLIFIER

SLVS457A – JANUARY 2003 – REVISED MARCH 2003

- Equivalent Input Noise Voltage 5 nV/√Hz Typ at 1 kHz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- High Slew Rate ... 9 V/μs Typ
- Peak-to-Peak Output Voltage Swing 32 V Typ, With V_{CC±} = ±18 V and R_L = 600 Ω
- Wide Supply-Voltage Range . . . ±3 V to ±20 V
- Common-Mode Rejection Ratio . . . 100 dB Typ
- High dc Voltage Gain . . . 100 V/mV Typ
- Applications: Audio PreAmps, Active Filters, Headphone Amps
- End Equipment: DVD/CD/CDRW Players; Set-Top Boxes

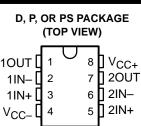
description/ordering information

The TL4581 is a dual operational amplifier that has been designed optimally for audio applications, such as improving tone control. It offers low noise, high-gain bandwidth, good slew, and high output current drive for driving capacitive loads. These features make the TL4581 ideally suited for audio applications, such as audio preamps and active filters. When high output current is required, the TL4581 also can be used as a headphone amplifier.

TA	PAC	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – P	Tube of 50	TL4581P	TL4581P
0°C to 70°C	SOIC – D	Tube of 75	TL4581D	T4581
0.0 10 10.0	50IC - D	Reel of 2500	TL4581DR	14561
	SOP – PS	Reel of 2000	TL4581PSR	T4581

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

TL4581 DUAL LOW-NOISE HIGH-DRIVE OPERATIONAL AMPLIFIER

SLVS457A - JANUARY 2003 - REVISED MARCH 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage (see Note 1): V _{CC+}	
	–22 V
Input voltage, either input (see Notes 1 and 2)	
Input current (see Note 3)	±10 mA
Duration of output short circuit (see Note 4)	Unlimited
Operating virtual junction temperature, T _J	150°C
Package thermal impedance, θ_{JA} (see Notes 5 and 6): D	package
P	package
P	S package 95°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 se	conds
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.

- 3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
- 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC+}	Supply voltage	5	15	V
V _{CC} -	Supply voltage	-5	-15	V
Т _А	Operating free-air temperature range	0	70	°C

TL4581 DUAL LOW-NOISE HIGH-DRIVE OPERATIONAL AMPLIFIER

SLVS457A - JANUARY 2003 - REVISED MARCH 2003

	PARAMETER	Т	EST CONDITIONS [†]		MIN	TYP	MAX	UNIT
M		$T_A = 25^{\circ}C$				0.5	4	
VIO	Input offset voltage	V _O = 0	$T_A = 0^\circ C$ to $70^\circ C$				5	mV
1	la suit affa at aussant	T _A = 25°C	•			10	150	- 4
IO	Input offset current	$T_A = 0^\circ C$ to $70^\circ C$					200	nA
lun.	Input biog ourrent	$T_A = 25^{\circ}C$				200	800	nA
IВ	Input bias current	$T_A = 0^{\circ}C$ to $70^{\circ}C$					1000	ΠA
VICR	Common-mode input-voltage range				±12	±13		V
	Maximum peak-to-peak	R _I ≥ 600 Ω	$V_{CC\pm} = \pm 15 V$		24	26		V
VOPP	output-voltage swing	RL ≥ 000 12	V _{CC±} = ±18 V	30	32		v	
		R _L ≥ 600 Ω,	T _A = 25°C		15	50		
A _{VD}	Large-signal differential-voltage amplification	$V_{O}^{-} = \pm 10 V$	$T_A = 0^\circ C$ to $70^\circ C$	10			V/mV	
		$R_L \ge 2 k\Omega$,	$T_A = 25^{\circ}C$		25	100		
		$V_{O}^{-} = \pm 10 V$	$T_A = 0^{\circ}C$ to $70^{\circ}C$	15				
A _{vd}	Small-signal differential-voltage amplification	f = 10 kHz				2.2		V/mV
D		R ₁ = 600 Ω	V _O = ±10 V			140		kHz
ВОМ	Maximum-output-swing bandwidth	RL = 000 32	$V_{CC\pm} = \pm 18 \text{ V}, \qquad V_O = \pm 14 \text{ V}$			100		KITZ
В ₁	Unity-gain bandwidth	R _L = 600 Ω,	C _L = 100 pF			10		MHz
r _i	Input resistance				30	300		kΩ
z _o	Output impedance	$A_{VD} = 30 \text{ dB},$	RL = 600 Ω,	f = 10 kHz		0.3		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} \min$			70	100		dB
k SVR	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 9 V \text{ to } \pm 15 V,$ $V_O = 0$		80	100		dB	
IOS	Output short-circuit current				10	38	60	mA
ICC	Total supply curent	V _O = 0,	No load			8	16	mA
	Crosstalk attenuation (VO1/VO2)	V ₀₁ = 10 V peak,	f = 1 kHz			110		dB

electrical characteristics, $V_{CC\pm}$ = +15 V, T_A = 25°C (unless otherwise noted)

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified.

operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT		
SR	Slew rate at unity gain				9		V/µs		
	Overshoot factor	$V_{I} = 100 \text{ mV},$ $R_{L} = 600 \Omega,$	AVD = 1, C _L = 100 pF		10		%		
V	Equivalent input noise voltage	f = 30 Hz f = 1 kHz			8		nV/√Hz		
۷n	Equivalent input hoise voitage				5		nv/vHz		
		f = 30 Hz			2.7		pA/√Hz		
'n	Equivalent input noise current	f = 1 kHz			0.7		- pa/vHz		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated TEXAS NSTRUMENTS www.ti.com

4-Jun-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL4581D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL4581PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL4581PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL4581PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

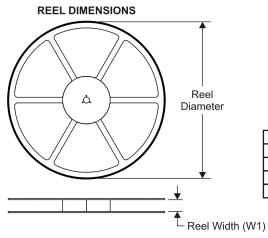
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

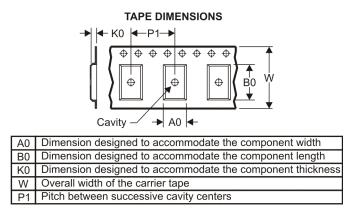
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

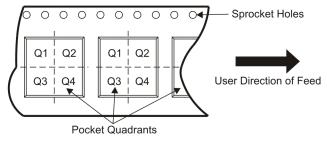
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI


PACKAGE OPTION ADDENDUM

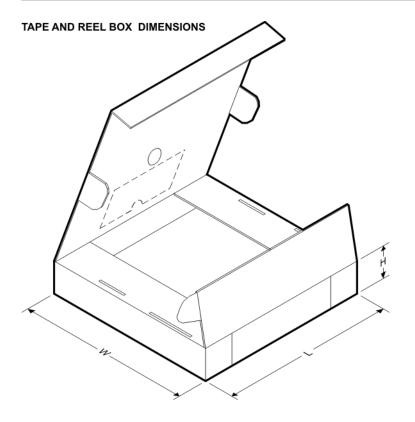

4-Jun-2007

to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

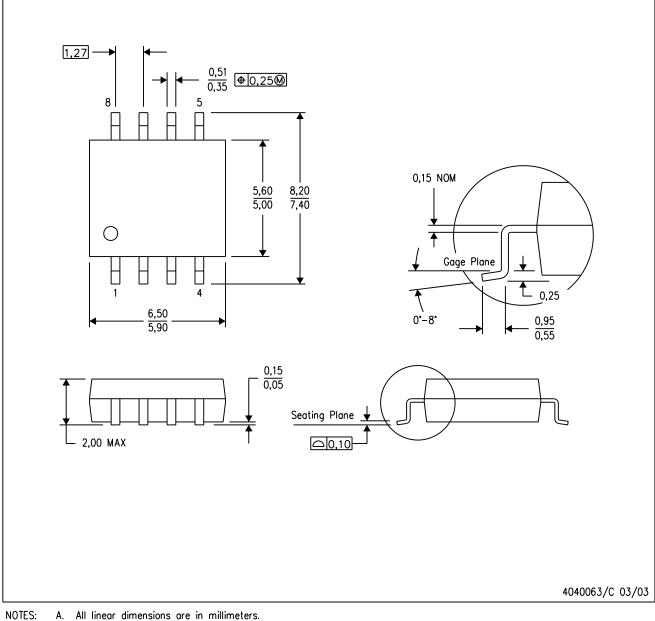
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*A	Il dimensions are nominal												
	Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TL4581DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
	TL4581PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

19-Mar-2008


*All dimensions are nominal

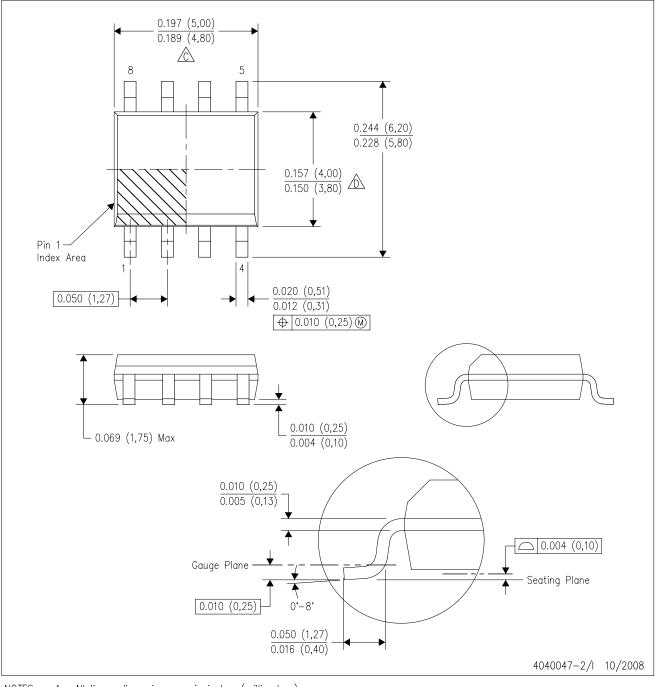
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL4581DR	SOIC	D	8	2500	340.5	338.1	20.6
TL4581PSR	SO	PS	8	2000	346.0	346.0	33.0

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

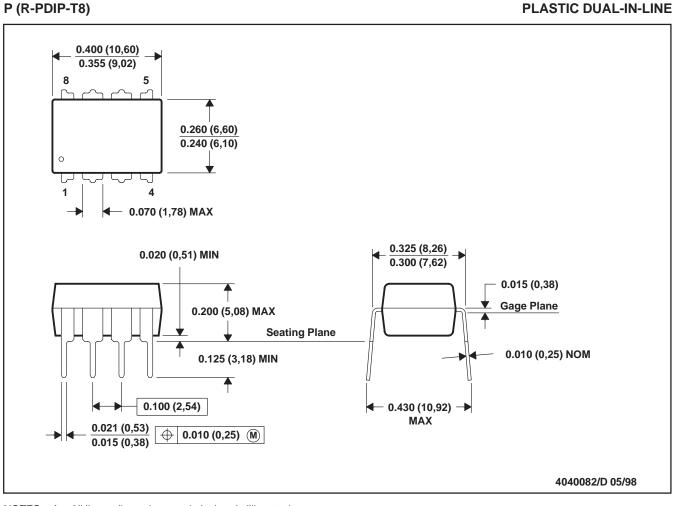
D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AA.

MECHANICAL DATA

MPDI001A - JANUARY 1995 - REVISED JUNE 1999

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

